Parasites of the African Clawed Frog, *Xenopus laevis*, in Southern California, U.S.A

Author(s): Boris I. Kuperman, Victoria E. Matey, Robert N. Fisher, Edward L. Ervin, Manna L. Warburton, Ludmila Bakhireva, and Cynthia A. Lehman

Published By: The Helminthological Society of Washington

DOI: http://dx.doi.org/10.1654/4112

BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use.

Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.
Research Note

Parasites of the African Clawed Frog, *Xenopus laevis*, in Southern California, U.S.A.

BORIS I. KUPERMAN,1† VICTORIA E. MATEY,1,4 ROBERT N. FISHER,2 EDWARD L. ERVIN,2 MANNA L. WARBURTON,2 LUDMILA BAKHIREVA,3 AND CYNTHIA A. LEHMAN1

1 Center for Inland Waters and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, U.S.A.,
2 United States Geological Survey–Biological Resources Division, 5745 Kearny Villa Road, San Diego, California 92123, U.S.A., and
3 Department of Epidemiology and Biostatistics, School of Public Health, San Diego State University, San Diego, California 92182, U.S.A.

ABSTRACT: A total of 230 feral African clawed frogs, *Xenopus laevis*, from 3 localities in southern California were examined for parasites. The following species were found: 3 species of Protozoa, *Nyctotherus*, *Balantidium*; 2 species of Monogenea, *Protopolyctena*; 2 species of Digenea, *Clinostomum*; 3 species of Acanthocephala, *Acanthocephalus*; 2 species of Monogenea, *Contracaecum*; 2 species of Cestoda, *Protopolystoma*; 1 species of Nematoda, *Eustrongylides*; 1 species of Acanthocephala, *Acanthocephalus*. Of these, the protozoans *P. xenopus* and *B. xenopodis* have an African origin. The monogenean *Protopolyctena xenopus* (Price, 1943) has been reported from populations of *X. laevis* in Wales, U.K., and southern California, U.S.A., and the pseudophyllidean cestode *Cephalochlamys namaquensis* (Cohn, 1906) from populations on the Isle of Wight, U.K., and southern California (Lafferty and Page, 1997; Tinsley and Jackson, 1998; Jackson and Tinsley, 2001a, b). This note presents parasites of *X. laevis* collected in southern California and compares them with those found in African populations of *X. laevis*.

In South Africa, *X. laevis* harbors a diverse parasite fauna, with most species unique to this host. Twenty-five genera from 7 taxonomic groups (Protozoa, Monogenea, Digenea, Cestoda, *Nyctotherus*, *San Diego*), with most species unique to this host. Twenty-five genera from 7 taxonomic groups (Protozoa, Monogenea, Digenea, Cestoda, *Xenopus laevis*). In contrast, little is known about the parasites of *X. laevis* outside Africa. The monogenean *Protopolyctena xenopus* (Price, 1943) has been reported from populations of *X. laevis* in Wales, U.K., and southern California, U.S.A., and the pseudophyllidean cestode *Cephalochlamys namaquensis* (Cohn, 1906) from populations on the Isle of Wight, U.K., and southern California (Lafferty and Page, 1997; Tinsley and Jackson, 1998; Jackson and Tinsley, 2001a, b). This note presents parasites of *X. laevis* collected in southern California and compares them with those found in African populations of *X. laevis*.

A total of 230 *X. laevis* (mean snout–vent length, 61 ± 25 mm SD, range 16–90 mm) were collected in 1999–2001 from 3 localities in southern California, U.S.A.: 132 from ponds of the Rancho Jamul System (32°40′03″N; 116°51′48″W), San Diego County; 68 from ponds of the Dulzura Creek System (32°37′30″N; 116°46′34″W), San Diego County; 30 from a backwater of the Santa Ana River (33°58′00″N; 117°38′43″W), Riverside County. The frogs were trapped using Gee® minnow traps or seines, transported to San Diego State University, and killed with an overdose of MS-222. After snout–vent measurement and external examination, each frog was examined internally. The body was opened by an incision from vent to throat and the gastrointestinal tract, kidney, urinary bladder, lungs, liver, heart, gonads, and body cavity were examined separately using a dissection microscope. Helminths were collected, counted, and selected specimens fixed for light microscopy (LM) or scanning electron micros-
copy (SEM) for precise identification. Helminths for LM were fixed in 70% ethanol, AFA (alcohol, formalin, acetic acid), or 5% formalin, stained with hematoxylin, and examined using a compound microscope. Protozoans for LM were collected by pipetting from rectal contents and examined alive or fecal smears were fixed in Schaudinn’s fixative and stained with iron hematoxylin. Both helminths and protozoans selected for SEM were fixed in Karnovsky’s solution, processed by standard methods, and examined with a Hitachi S-2700 scanning electron microscope. Voucher frogs were deposited in the herpetology collection of the California Academy of Sciences (CAS), San Francisco, California, U.S.A. (CAS 220089-220108).

Ten species of parasites were found: 3 species of Protozoa, *Nyctotherus* sp., *Balantidium xenopodis* De Puytorac and Grain, 1965, *Protoopalinia xenopodus* Metcalf, 1923; 2 species of Monogenea, *P. xenopodis*, *Gyridicotylus gallieni* Vercammen-Grandjean, 1960; 1 species of Digenea, *Clinostomum* sp. (as metacercariae); 1 species of Cestoda, *Cephalochlamys namaquensis*; 2 species of Nematoda (as larvae), *Contracaecum* sp. and *Eustrongylides* sp; and 1 species of Acanthocephala, *Acanthocephalus* sp. (as cystacanth). Selected specimens were deposited in the Harold W. Manter Laboratory of Parasitology (HWML), University of Nebraska State Museum, Lincoln, Nebraska, U.S.A.: *Nyctotherus* sp., HWML 16618; *B. xenopodis*, HWML 16619; *P. xenopodis*, HWML 16620; *P. xenopodus*, HWML 16130; *G. gallieni*, HWML 16623; *Clinostomum* sp., HWML 16622, *C. namaquensis*, HWML 16132; *Contracaecum* sp., HWML 16733; *Eustrongylides* sp., HWML 16734; and *Acanthocephalus* sp., HWML 16732. Prevalence and infection sites for each parasite and ranges of infection for helminths are given in Table 1.

The protozoans *B. xenopodis* and *P. xenopodus* were previously recorded for *X. laevis in Africa* (Thurston, 1970). The morphology of *Nyctotherus* sp. from California is similar to that reported for the African specimens only identified to generic level by Thurston (1970). Further study is required to identify the species of this parasite and to determine whether our material represents the same species as the African material. Both species of monogeneans have been reported from Africa (Tinsley, 1996). In addition, *P. xenopodis* has been recorded in *Xenopus* from U.K. and the United States (Tinsley and Jackson, 1998; Jackson and Tinsley, 2001a). Metacercariae of *Clinostomum* sp. have previously been

Table 1. Prevalence, range, and infection sites of parasites of *Xenopus laevis* from 3 localities in southern California, U.S.A., 1999–2001.

<table>
<thead>
<tr>
<th>Parasite</th>
<th>Prevalence (%)</th>
<th>Range</th>
<th>Infection Site*</th>
<th>Present in Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RJS</td>
<td>DCS</td>
<td>SAR</td>
<td>RJS</td>
</tr>
<tr>
<td>Protozoa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nyctotherus sp.</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>R</td>
</tr>
<tr>
<td>Balantidium xenopodis</td>
<td>81</td>
<td>79</td>
<td>77</td>
<td>R</td>
</tr>
<tr>
<td>Protoopalinia xenopodus</td>
<td>45</td>
<td>44</td>
<td>40</td>
<td>R</td>
</tr>
<tr>
<td>Monogenea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protopolystoma xenopodis</td>
<td>48</td>
<td>46</td>
<td>47</td>
<td>1–24</td>
</tr>
<tr>
<td>Gyridicotylus gallieni</td>
<td>10</td>
<td>18</td>
<td>10</td>
<td>1–13</td>
</tr>
<tr>
<td>Digenea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinostomum sp.</td>
<td>0</td>
<td>72</td>
<td>0</td>
<td>1–4</td>
</tr>
<tr>
<td>Cestoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalochlamys namaquensis</td>
<td>51</td>
<td>46</td>
<td>30</td>
<td>1–55</td>
</tr>
<tr>
<td>Nematoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contracaecum sp.</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>1–3</td>
</tr>
<tr>
<td>Eustrongylides sp.</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1–2</td>
</tr>
<tr>
<td>Acanthocephala</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acanthocephalus sp.</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

* BC, body cavity; E, esophagus; L, liver; LC, lymph cavities; M, mouth cavity; P, pericardium; R, rectum; SI, small intestine, ST, subcutaneous tissue; UB, urinary bladder.

‡ Neither African nor California specimens identified beyond genus.

† RJS, Rancho Jamul System (*n* = 132); DCS, Dulzura Creek System (*n* = 68); SAR, Santa Ana River (*n* = 30).

/C160

/C224
reported from *X. laevis* in Africa (Macnae et al., 1973) as well as ranid and hylid frogs in the United States (Ingles, 1936; Goldberg et al., 1998; Goldberg and Bursey, 2001). However, it is unknown whether the same species of *Clinostomum* infects *X. laevis* in Africa and in California. *Cephalochlamys namaquensis* is the only cestode known to infect *X. laevis*. It has been reported from Africa, U.K., and United States (Thurston, 1967; Ferguson and Appleton, 1988; Tinsley, 1996; Lafferty and Page, 1997; Jackson and Tinsley, 2001b). In Africa, *Xenopus* harbors 2 camallanid, 1 capillarid, and 1 filarial species of nematode (Thurston, 1970; Wade, 1982; Jackson and Tinsley, 1995). We did not find any of these species but did find juvenile stages of 2 other species, *Contracaecum* sp. and *Eustrongylides* sp., which have not been reported in Africa. Acanthocephala is the only parasite phylum that has not been reported from *X. laevis* in Africa (see Tinsley, 1996). Our specimen was located in the liver and was assigned to *Acanthocephalus* sp. based on the structure of its trunk and proboscis.

In California, *X. laevis* harbors parasite species of African origin that apparently were carried by the frog to its new environment as well as species acquired after introduction. Introduced African species include the protozoans *B. xenopodis* and *P. xenopodus*, the monogeneans *P. xenopodis* and *G. gallieni*, and the cestode *C. namaquensis*, all species unique to *X. laevis* (see Tinsley, 1996). Neither did we find them in other frogs, i.e., *Hyla regilla*, *Hyla cadaverina*, *Rana catesbeiana*, *Bufo boreas*, or *Spea hammondii*, that we collected in the same localities as *X. laevis* (Kuperman, unpublished data) nor have they been reported in frogs of other areas of North America (Ingles, 1936; Baker, 1987; Goldberg et al., 1995; Goldberg, Bursey, Gergus et al., 1996; Goldberg, Bursey, Sullivan, et al., 1996; Goldberg et al., 1998).

African species with direct life cycles (protozoans and monogeneans) dominate the list of parasites carried to new environments. Of 13 African parasites with indirect life cycles unique to *Xenopus* (see Tinsley, 1996), only the cestode *C. namaquensis* seems to have found a suitable intermediate host, a cyclopoid copepod, that allowed its survival in California. Newly acquired parasites of *X. laevis* in California are predominantly bird parasites that use fish as an intermediate host, i.e., the nematodes *Contracaecum* sp. and *Eustrongylides* sp. and the acanthocephalan *Acanthocephalus* sp. (Yamaguti, 1961, 1963). Because *X. laevis* has a fully aquatic life history, it is perhaps more similar to fish than to semiterrestrial frogs and may serve as a paratenic host. Species of *Clinostomum* are known to use both fish and amphibians as intermediate hosts (Yamaguti, 1961; Levine, 1980).

Populations of *X. laevis* in California harbor fewer species of parasites than African populations. The number of protozoan species is reduced from 9 to 3, digeneans from 10 to 1, nematodes from 5 to 2, and parasites of Hirudinea and Acari are missing. These data are in accord with a major principle of ecological parasitology (Dogiel, 1938; Kennedy and Bush, 1994): a host species with a particular parasite fauna in its native range will lose a number of parasite species as a result of introduction to a new environment and will acquire additional non–host-specific parasites in the new habitat.

We thank Terri Stewart, California Department of Fish and Game, Joe Funk, Bureau of Land Management, and Keith Greer, City of San Diego, for providing access to collection sites; Adam Backlin, Carmon Burton, Rob Lovich, Drew Stokes, Camm Swift, and Peter Tang for their assistance in the collection of frogs. We are deeply indebted to Charles R. Bursey, John M. Kinsella, and Bahram S. Dezfuli for their valuable help in the identification of trematodes, nematodes, and acanthocephalans. We express our gratitude to Stuart Hurlbert and Charles Bursey for their critical reading of the manuscript and to Richard C. Tinsley for useful discussion. This research was partially funded by the U.S. Geological Survey, Amphibian Research Monitoring Initiative, and NAQWA programs.

LITERATURE CITED

Dogiel, V. A. 1938. Some achievements in the field of parasitology. Zoologicheskii Zhurnal 17:889–904. (In Russian.)

